Eigenvalue problems involving the fractional p (x)-Laplacian operator E Azroul, A Benkirane, M Shimi Adv. Oper. Theory 4 (2), 539-555, 2019 | 61 | 2019 |

On a class of fractional *p*(*x*) -Kirchhoff type problemsE Azroul, A Benkirane, M Shimi, M Srati Applicable Analysis 100 (2), 383-402, 2021 | 49 | 2021 |

Existence and multiplicity of solutions for fractional *p*(*x*,.)-Kirchhoff-type problems in ℝ^{N}E Azroul, A Benkirane, M Shimi Applicable Analysis 100 (9), 2029-2048, 2021 | 41 | 2021 |

On a class of nonlocal problems in new fractional Musielak-Sobolev spaces E Azroul, A Benkirane, M Shimi, M Srati Applicable Analysis 101 (6), 1933-1952, 2022 | 20 | 2022 |

Embedding and extension results in fractional Musielak–Sobolev spaces MS E. Azroul, A. Benkirane, M. Shimi Applicable Analysis, 1-25, 2021 | 17* | 2021 |

Existence Results for Fractional p (x,.)-Laplacian Problem Via the Nehari Manifold Approach E Azroul, A Benkirane, A Boumazourh, M Shimi Applied Mathematics & Optimization, 2020 | 16 | 2020 |

General fractional Sobolev Space with variable exponent and applications to nonlocal problems E Azroul, A Benkirane, M Shimi Adv. Oper. Theory 2020, 2019 | 12 | 2019 |

Three solutions for fractional p (x,.)-Laplacian Dirichlet problems with weight E Azroul, A Benkirane, M Shimi, M Srati Journal of Nonlinear Functional Analysis 2020, 1-18, 2020 | 11 | 2020 |

Nonlocal eigenvalue problems with variable exponent E Azroul, M Shimi Moroccan Journal of Pure and Applied Analysis 4 (1), 46-61, 2018 | 9 | 2018 |

An introduction to generalized fractional Sobolev Space with variable exponent E Azroul, A Benkirane, M Shimi arXiv preprint arXiv:1901.05687, 2019 | 8 | 2019 |

Existence and multiplicity of solutions for fractional-Kirchhoff type problems in MS E Azroul, A Benkirane Appl. Anal.,, 2019 | 7 | 2019 |

On a nonlocal problem involving the fractional -Laplacian satisfying Cerami condition E Azroul, A Benkirane, M Shimi Discrete & Continuous Dynamical Systems-S, 17, 2020 | 5 | 2020 |

Existence of solutions for a nonlocal Kirchhoff type problem in Fractional Orlicz-Sobolev spaces E Azroul, A Benkirane, M Srati, M Shimi arXiv preprint arXiv:1901.05216, 2019 | 5 | 2019 |

Nonlocal eigenvalue problems with variable exponent, Moroccan J. of Pure and Appl E Azroul, M Shimi Anal 4 (1), 46-61, 2018 | 5 | 2018 |

EXISTENCE RESULTS FOR ANISOTROPIC FRACTIONAL (*p*_{1}(*x*, .), *p*_{2}(*x*, .))-KIRCHHOFF TYPE PROBLEMSE Azroul, A Benkirane, NT Chung, M Shimi Journal of Applied Analysis & Computation 11 (5), 2363-2386, 2021 | 4 | 2021 |

Multiple solutions for a binonlocal fractional p (x,·)-Kirchhoff type problem E Azroul, A Benkirane, M Shimi, M Srati Journal of Integral Equations and Applications 34 (1), 1-17, 2022 | | 2022 |

Embedding and extension results in Fractional Musielak-Sobolev spaces E Azroul, A Benkirane, M Shimi, M Srati arXiv preprint arXiv:2007.11043, 2020 | | 2020 |

Ekeland’s Variational Principle for the Fractional *p*(*x*)-Laplacian OperatorE Azroul, A Benkirane, M Shimi Recent Advances in Modeling, Analysis and Systems Control: Theoretical …, 2020 | | 2020 |

Existence and Multiplicity of solutions for fractional p (x,.)-Kirchhoff type problems in ℝ N E Azroul, A Benkirane, M Shimi Applicable Analysis, 1-20, 2019 | | 2019 |