Follow
Kamil Deja
Title
Cited by
Cited by
Year
Unveiling the strong interaction among hadrons at the LHC
Nature 588 (7837), 232-238, 2020
2042020
Generative models for fast cluster simulations in the TPC for the ALICE experiment
K Deja, T Trzcinski, L Graczykowski
Proceedings, 23rd International Conference on Computing in High Energy and …, 2019
392019
On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
K Deja, A Kuzina, T Trzciński, JM Tomczak
NeurIPS 2022, 2022
332022
Learning data representations with joint diffusion models
K Deja, T Trzciński, JM Tomczak
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2023
182023
End-to-end sinkhorn autoencoder with noise generator
K Deja, J Dubiński, P Nowak, S Wenzel, P Spurek, T Trzcinski
IEEE Access 9, 7211-7219, 2020
162020
Exploring continual learning of diffusion models
M Zając, K Deja, A Kuzina, JM Tomczak, T Trzciński, F Shkurti, P Miłoś
arXiv preprint arXiv:2303.15342, 2023
152023
Using machine learning for particle identification in ALICE
ŁK Graczykowski, M Jakubowska, KR Deja, M Kabus, Alice Collaboration
Journal of Instrumentation 17 (07), C07016, 2022
142022
Binplay: A binary latent autoencoder for generative replay continual learning
K Deja, P Wawrzyński, D Marczak, W Masarczyk, T Trzciński
2021 International Joint Conference on Neural Networks (IJCNN), 1-8, 2021
112021
Machine learning methods for simulating particle response in the zero degree calorimeter at the ALICE experiment, CERN
J Dubiński, K Deja, S Wenzel, P Rokita, T Trzciński
AIP Conference Proceedings 3061 (1), 2024
102024
Looking through the past: better knowledge retention for generative replay in continual learning
V Khan, S Cygert, B Twardowski, T Trzciński
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
102023
Using Machine Learning techniques for Data Quality Monitoring in CMS and ALICE experiments
KR Deja
PoS, 236, 2019
102019
Automatic evaluation of speaker similarity
K Deja, A Sanchez, J Roth, M Cotescu
Interspeech 2022, 2022
8*2022
Assigning quality labels in the high-energy physics experiment ALICE using machine learning algorithms
T Trzcinski, K Deja
Acta Phys. Polon. Suppl. A 11, 647, 2018
72018
Machine-learning-based particle identification with missing data
M Kasak, K Deja, M Karwowska, M Jakubowska, Ł Graczykowski, M Janik
The European Physical Journal C 84 (7), 691, 2024
62024
Guide: Guidance-based incremental learning with diffusion models
B Cywiński, K Deja, T Trzciński, B Twardowski, Ł Kuciński
arXiv preprint arXiv:2403.03938, 2024
52024
Selectively increasing the diversity of gan-generated samples
J Dubiński, K Deja, S Wenzel, P Rokita, T Trzcinski
International Conference on Neural Information Processing, 260-270, 2022
52022
Logarithmic continual learning
W Masarczyk, P Wawrzyński, D Marczak, K Deja, T Trzciński
IEEE Access 10, 117001-117010, 2022
52022
On robustness of generative representations against catastrophic forgetting
W Masarczyk, K Deja, T Trzcinski
International Conference on Neural Information Processing, 325-333, 2021
52021
Multiband VAE: latent space alignment for knowledge consolidation in continual learning
K Deja, P Wawrzynski, W Masarczyk, D Marczak, T Trzciński
IJCAI 2022, 2022
42022
Generative diffusion models for fast simulations of particle collisions at cern
M Kita, J Dubiński, P Rokita, K Deja
arXiv preprint arXiv:2406.03233, 2024
32024
The system can't perform the operation now. Try again later.
Articles 1–20