Follow
Siavash Golkar
Siavash Golkar
Research Scientist, New York University
Verified email at nyu.edu - Homepage
Title
Cited by
Cited by
Year
Continual Learning via Neural Pruning
S Golkar, M Kagan, K Cho
NeurIPS 2019 Workshop on Real Neurons & Hidden Units, 2019
1572019
(Non)-renormalization of the chiral vortical effect coefficient
S Golkar, DT Son
Journal of High Energy Physics 2015 (2), 169, 2015
1062015
Higher-spin theory of the magnetorotons
S Golkar, DX Nguyen, MM Roberts, DT Son
Physical review letters 117 (21), 216403, 2016
632016
Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect
S Golkar, DX Nguyen, DT Son
Journal of High Energy Physics 2016 (1), 1-15, 2016
622016
Global anomalies and effective field theory
S Golkar, S Sethi
Journal of High Energy Physics 2016 (5), 1-20, 2016
592016
Particle-hole symmetry and composite fermions in fractional quantum Hall states
DX Nguyen, S Golkar, MM Roberts, DT Son
Physical Review B 97 (19), 195314, 2018
362018
Operator product expansion and conservation laws in non-relativistic conformal field theories
S Golkar, DT Son
Journal of High Energy Physics 2014 (12), 1-11, 2014
362014
Effective field theory of relativistic quantum Hall systems
S Golkar, MM Roberts, DT Son
Journal of High Energy Physics 2014 (12), 1-10, 2014
292014
The Euler current and relativistic parity odd transport
S Golkar, MM Roberts, DT Son
Journal of High Energy Physics 2015 (4), 1-22, 2015
26*2015
Multiple physics pretraining for physical surrogate models
M McCabe, BRS Blancard, LH Parker, R Ohana, M Cranmer, A Bietti, ...
arXiv preprint arXiv:2310.02994, 2023
242023
xVal: A continuous number encoding for large language models
S Golkar, M Pettee, M Eickenberg, A Bietti, M Cranmer, G Krawezik, ...
arXiv preprint arXiv:2310.02989, 2023
232023
A biologically plausible neural network for multichannel canonical correlation analysis
D Lipshutz, Y Bahroun, S Golkar, AM Sengupta, DB Chklovskii
Neural Computation 33 (9), 2309-2352, 2021
232021
A simple normative network approximates local non-Hebbian learning in the cortex
S Golkar, D Lipshutz, Y Bahroun, A Sengupta, D Chklovskii
Advances in neural information processing systems 33, 7283-7295, 2020
202020
Hall viscosity, spin density, and torsion
M Geracie, S Golkar, MM Roberts
arXiv preprint arXiv:1410.2574, 2014
192014
A biologically plausible neural network for Slow Feature Analysis
D Lipshutz, C Windolf, S Golkar, DB Chklovskii
Advances in Neural Information Processing Systems 33, 2020
182020
Constrained predictive coding as a biologically plausible model of the cortical hierarchy
S Golkar, T Tesileanu, Y Bahroun, A Sengupta, D Chklovskii
Advances in Neural Information Processing Systems 35, 14155-14169, 2022
142022
Neural optimal feedback control with local learning rules
J Friedrich, S Golkar, S Farashahi, A Genkin, A Sengupta, D Chklovskii
Advances in Neural Information Processing Systems 34, 16358-16370, 2021
122021
Inferring the quantum density matrix with machine learning
K Cranmer, S Golkar, D Pappadopulo
ICML 2019 Workshop on Theoretical Physics for Deep Learning, 2019
122019
Conformal windows of SP (2N) and SO (N) gauge theories from topological excitations on ℝ3× S1
S Golkar
Journal of High Energy Physics 2009 (11), 076, 2009
112009
AstroCLIP: cross-modal pre-training for astronomical foundation models
F Lanusse, LH Parker, S Golkar, A Bietti, M Cranmer, M Eickenberg, ...
NeurIPS 2023 AI for Science Workshop, 2023
82023
The system can't perform the operation now. Try again later.
Articles 1–20