Brownian motion on the Sierpinski gasket MT Barlow, EA Perkins Probability theory and related fields 79 (4), 543-623, 1988 | 707 | 1988 |

Part ii: Dawson-Watanabe superprocesses and measure-valued diffusions E Perkins Lectures on probability theory and statistics, 125-329, 2002 | 319 | 2002 |

Historical processes DA Dawson, EA Perkins American Mathematical Soc., 1991 | 312 | 1991 |

Super-Brownian motion: path properties and hitting probabilities DA Dawson, I Iscoe, EA Perkins Probability theory and related fields 83 (1), 135-205, 1989 | 205 | 1989 |

Rescaled voter models converge to super-Brownian motion JT Cox, R Durrett, EA Perkins The Annals of Probability 28 (1), 185-234, 2000 | 107 | 2000 |

A space-time property of a class of measure-valued branching diffusions EA Perkins Transactions of the American Mathematical Society 305 (2), 743-795, 1988 | 97 | 1988 |

Nonstandard construction of the stochastic integral and applications to stochastic differential equations. I DN Hoover, E Perkins Transactions of the American Mathematical Society 275 (1), 1-36, 1983 | 96 | 1983 |

Polar sets and multiple points for super-Brownian motion E Perkins The Annals of Probability, 453-491, 1990 | 93 | 1990 |

Rescaled contact processes converge to super-Brownian motion in two or more dimensions R Durrett, EA Perkins Probability Theory and Related Fields 114, 309-399, 1999 | 87 | 1999 |

Measure-valued branching diffusions with singular interactions SN Evans, EA Perkins Canadian Journal of Mathematics 46 (1), 120-168, 1994 | 87 | 1994 |

Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: the white noise case L Mytnik, E Perkins Probability theory and related fields 149 (1), 1-96, 2011 | 83 | 2011 |

Collision local times and measure-valued processes MT Barlow, SN Evans, EA Perkins Canadian journal of mathematics 43 (5), 897-938, 1991 | 83 | 1991 |

A global intrinsic characterization of Brownian local time E Perkins The Annals of Probability, 800-817, 1981 | 81 | 1981 |

On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients L Mytnik, E Perkins, A Sturm | 79 | 2006 |

The compact support property for solutions to the heat equation with noise C Mueller, EA Perkins Probability Theory and Related Fields 93 (3), 325-358, 1992 | 79 | 1992 |

The exact Hausdorff measure of the level sets of Brownian motion E Perkins Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 58, 373-388, 1981 | 79 | 1981 |

The Hausdorff measure of the closed support of super-Brownian motion E Perkins Annales de l'IHP Probabilités et statistiques 25 (2), 205-224, 1989 | 77 | 1989 |

Long-time behavior and coexistence in a mutually catalytic branching model DA Dawson, EA Perkins Annals of probability, 1088-1138, 1998 | 76 | 1998 |

Uniform measure results for the image of subsets under Brownian motion EA Perkins, SJ Taylor Probability theory and related fields 76 (3), 257-289, 1987 | 76 | 1987 |

Degenerate stochastic differential equations with Hölder continuous coefficients and super-Markov chains R Bass, E Perkins Transactions of the American Mathematical Society 355 (1), 373-405, 2003 | 69 | 2003 |