Follow
H. Brendan McMahan
H. Brendan McMahan
Research Scientist, Google Seattle
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Communication-efficient learning of deep networks from decentralized data
HB McMahan, E Moore, D Ramage, S Hampson, B Agüera y Arcas
Proceedings of the 20 th International Conference on Artificial Intelligence …, 2017
198242017
Deep learning with differential privacy
M Abadi, A Chu, I Goodfellow, HB McMahan, I Mironov, K Talwar, L Zhang
Proceedings of the 2016 ACM SIGSAC conference on computer and communications …, 2016
68272016
Advances and open problems in federated learning
P Kairouz, HB McMahan, B Avent, A Bellet, M Bennis, AN Bhagoji, ...
Foundations and trends® in machine learning 14 (1–2), 1-210, 2021
62932021
Federated Learning: Strategies for Improving Communication Efficiency
J Konečnı
arXiv preprint arXiv:1610.05492, 2016
56022016
Practical secure aggregation for privacy-preserving machine learning
K Bonawitz, V Ivanov, B Kreuter, A Marcedone, HB McMahan, S Patel, ...
proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications …, 2017
33202017
Towards federated learning at scale: Syste m design
K Bonawitz
arXiv preprint arXiv:1902.01046, 2019
32292019
Federated optimization: Distributed machine learning for on-device intelligence
J Konečnı, HB McMahan, D Ramage, P Richtárik
arXiv preprint arXiv:1610.02527, 2016
23012016
Learning differentially private recurrent language models
HB McMahan, D Ramage, K Talwar, L Zhang
arXiv preprint arXiv:1710.06963, 2017
15642017
Leaf: A benchmark for federated settings
S Caldas, SMK Duddu, P Wu, T Li, J Konečnı, HB McMahan, V Smith, ...
arXiv preprint arXiv:1812.01097, 2018
14622018
Adaptive federated optimization
S Reddi, Z Charles, M Zaheer, Z Garrett, K Rush, J Konečnı, S Kumar, ...
arXiv preprint arXiv:2003.00295, 2020
14532020
Ad click prediction: a view from the trenches
HB McMahan, G Holt, D Sculley, M Young, D Ebner, J Grady, L Nie, ...
Proceedings of the 19th ACM SIGKDD international conference on Knowledge …, 2013
11452013
Online convex optimization in the bandit setting: gradient descent without a gradient
AD Flaxman, AT Kalai, HB McMahan
arXiv preprint cs/0408007, 2004
10152004
Federated optimization: Distributed optimization beyond the datacenter
J Konečnı, B McMahan, D Ramage
arXiv preprint arXiv:1511.03575, 2015
8112015
Federated learning: Collaborative machine learning without centralized training data
B McMahan, D Ramage
Google Research Blog 3, 2017
7882017
Can you really backdoor federated learning?
Z Sun, P Kairouz, AT Suresh, HB McMahan
arXiv preprint arXiv:1911.07963, 2019
6312019
Practical secure aggregation for federated learning on user-held data
K Bonawitz, V Ivanov, B Kreuter, A Marcedone, HB McMahan, S Patel, ...
arXiv preprint arXiv:1611.04482, 2016
5552016
cpSGD: Communication-efficient and differentially-private distributed SGD
N Agarwal, AT Suresh, FXX Yu, S Kumar, B McMahan
Advances in Neural Information Processing Systems 31, 2018
5332018
Expanding the reach of federated learning by reducing client resource requirements
S Caldas, J Konečny, HB McMahan, A Talwalkar
arXiv preprint arXiv:1812.07210, 2018
4862018
Adaptive bound optimization for online convex optimization
HB McMahan, M Streeter
Proceedings of the 23rd Annual Conference on Learning Theory (COLT), 2010
4182010
Planning in the presence of cost functions controlled by an adversary
HB McMahan, GJ Gordon, A Blum
Proceedings of the 20th International Conference on Machine Learning (ICML …, 2003
4002003
The system can't perform the operation now. Try again later.
Articles 1–20